Evaluation of ECG : Comparison of Decision Tree and Fuzzy Rules Induction

نویسندگان

  • Lenka Lhotska
  • Jan Macek
  • Daniele Peri
چکیده

This paper compares two different approaches to computer-aided analysis of ECG signals. ECG records are preprocessed by the wavelet transform, and the machine learning method of decision trees and fuzzy rules induction are used for classification. The wavelet transform allows good localisation of QRS complexes, P and T waves in time and amplitude. The average accuracy of detection of all events is above 87 per cent. For learning and further classification we use Quinlan's See5 application and FURL (FUzzy Rule Learner). We used the MIT-BIH database for experiments. Diverse settings of the parameters for decision tree generation (tree pruning, attribute selection, class sets) were examined. Two datasets and diverse settings of fuzzysets were examined as well.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparing different stopping criteria for fuzzy decision tree induction through IDFID3

Fuzzy Decision Tree (FDT) classifiers combine decision trees with approximate reasoning offered by fuzzy representation to deal with language and measurement uncertainties. When a FDT induction algorithm utilizes stopping criteria for early stopping of the tree's growth, threshold values of stopping criteria will control the number of nodes. Finding a proper threshold value for a stopping crite...

متن کامل

DIAGNOSIS OF BREAST LESIONS USING THE LOCAL CHAN-VESE MODEL, HIERARCHICAL FUZZY PARTITIONING AND FUZZY DECISION TREE INDUCTION

Breast cancer is one of the leading causes of death among women. Mammography remains today the best technology to detect breast cancer, early and efficiently, to distinguish between benign and malignant diseases. Several techniques in image processing and analysis have been developed to address this problem. In this paper, we propose a new solution to the problem of computer aided detection and...

متن کامل

Diagnosis of Coronary Artery Disease via a Novel Fuzzy Expert System Optimized by Cuckoo Search

In this paper, we propose a novel fuzzy expert system for detection of Coronary Artery Disease, using cuckoo search algorithm. This system includes three phases: firstly, at the stage of fuzzy system design, a decision tree is used to extract if-then rules which provide the crisp rules required for Coronary Artery Disease detection. Secondly, the fuzzy system is formed by setting the intervals ...

متن کامل

Fuzzy If-then Rule Induction with Cumulative Information Estimations Applied to Real-world Data

Real-world data containing instances corresponding to patients with otoneurological diseases were explored with fuzzy IFTHEN rule induction. It was based on transformation of a fuzzy decision tree made with using cumulative information estimations as the locally optimal criterion at its nodes. This method uses linguistic variables that allow us to naturally model various situations appearing in...

متن کامل

A Framework for Optimal Attribute Evaluation and Selection in Hesitant Fuzzy Environment Based on Enhanced Ordered Weighted Entropy Approach for Medical Dataset

Background: In this paper, a generic hesitant fuzzy set (HFS) model for clustering various ECG beats according to weights of attributes is proposed. A comprehensive review of the electrocardiogram signal classification and segmentation methodologies indicates that algorithms which are able to effectively handle the nonstationary and uncertainty of the signals should be used for ECG analysis. Ex...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004